Ecole Chercheur 2017 De l'expression des gènes aux réseaux

Module 1 : High Troughput Sequencing Technologies, available and futures...

Mathilde CLEMENT mathilde.clement@inra.fr

- I. What is transcriptomic analysis?
- II. DNA Sequencing history
- III. Available High Troughtput Sequencing technologies
- IV. What is France Génomique?

Quantification of the changing expression levels of each transcript during development and under different conditions

Quantification of the changing expression levels of each transcript during development and under different conditions

Microarray technology in the mid-1990s

Repression of phosphatidylinositol transfer protein α ameliorates the pathology of Duchenne muscular dystrophy

Viera et al., (2017) PNAS

Limitation of microarray analysis : Why did we need another technique of gene expression analysis?

- Arrays had to be designed and manufactured for each species
- Detection of only « known » genes
- No detection of genes weakly differentially expressed

Limitation of microarray analysis : Why did we need another technique of gene expression analysis?

- Arrays had to be designed and manufactured for each species
- Detection of only « known » genes
- No detection of genes weakly differentially expressed

In 2008, the first RNA-Seq protocol appering

- measuring transcriptomes at base-par resolution
- using essentially the same protocol for any species
- minimal noise level

Sultan et al., (2008) Sciences

RNA-Seq can detect 25% more genes than can microarrays

An overview of the eukaryotic transcriptome...

An overview of the eukaryotic transcriptome...

- Catalogue all species of transcript, including mRNAs, non-codin RNAs and small RNAs;
- Determine the transcriptional structure of genes, in terms of their start sites, 5' and 3' ends, splicing patterns and other post-transcriptional modifications;
- and to quantify the changing expression levels of each transcript during development and under different conditions

Sequencing over the Ages

1st generation sequencing _ Sanger sequencing

http://dailym.ai/1f1XeTB

Frederick Sanger 13 Aug 1918 – 19 Nov 2013

Won the Nobel Prize for Chemistry in **1958** and **1980**. Published the dideoxy chain termination method or "Sanger method" in 1977

Pres: Aut. Aud. Int. 172A Vol. 74, No. 12, pp. 5465–5497, December 1977

DNA sequencing with chain-terminating inhibitors (DNA payments, industrial sequence, harved plage 45176)

F. SANGER, S. NICELAN, AND A. B. COULAON Meter Insure Count Laboratory of Mileniae Biology. Cardingly Child R. England

Contributed by P. Songer. Crisciller 8, 3977

ABITRACT A new confluct los determining conductive or querence in DPA is described, D in similar to the 'glue and actual' encoded (longer, et al. 5 Context, a. 5, 1000). Also determined (longer, et al. 5 Context, a. 5, 1000). Also determined actual of the transmission of the CPA distance and encoder determined actual of the transmission of the CPA distance of an encoderscitation and the second distribution of the CPA distance which as a generality characterization and the conpetence of the transmission has been actually be the first performance. The type and the same context of the context of the transmission and the second second second second context of the two of the attace method.

"The "phu and mean" method (1) is a relatively capit and sample technique that has made possible the derivativention of the sequence of the presence of basicsteinphage dK174 (2), is despend on the one of DFA polynomean to transversion specific regime of the DFA moder consolidal andiffism. Although the method is considerably more regad and simple that other method is considerably more regad and simple that other method is considerably more regad and simple that of the second second is defined and simple specific basis. a encontension of oblass is which the U hydroxyl groups to obtained in tensor pairing with support to the U-balance/groups. The architecture function of the tensor of th

NETHODS

Proparation of the Triphenghate Asalogues. The proparatios of diTTP has been described (8, 7), and the material is now communicate contrible diff. has been moment for

1st generation sequencing _ Sanger sequencing

The methods relies on the use of (dideoxynucleotide) ddNTP which will terminate the polymarization

1st generation sequencing _ Sanger sequencing

Platform	Reads per run	Read length	Bases per run (gigabases)
ABI Sanger	96	800	0.0000768

1st generation sequencing _ Sanger sequencing

Bases per

run

(gigabases)

0.0000768

Reads per

run

Read length

800

Platform

ABI

Nature. 2001 Feb 15;409(6822):860-921. Initial sequencing and analysis of the human genome.

1st generation sequencing _ Sanger sequencing

Very high quality sequences (99.999%), 800 bp

Sanger sequencing is not an high throughput technology

1st generation sequencing _ Sanger sequencing

Very high quality sequences (99.999%)

Sanger sequencing is not an high throughput technology

Massive parallel sequencing No need to clone sequences and performe libraries of plasmids in bacteria

2nd/3rd generation sequencing technologie_Next Generation Sequencing_NGS

The general principle of NGS is to sequence several DNA fragments in the same sample

The genaral principle of NGS is to sequence several DNA fragments in the same sample

Amplification

Library amplification is required to obtain a sufficient signal from the sequencer. Two types of amplification:

> 1- the oil/ water emulsion _ePCR_emulsion PCR Roche 454, SOLID, Ion PGM

2- immobilisation on solid phase with an oligonucleotide (primer) and bridge amplification **Illumina**

Amplification

1- Emulsion PCR (Roche 454, SOLID, Ion PGM)

Amplification

1- Emulsion PCR (Roche 454, SOLID, Ion PGM)

Amplification

1- immobilisation on solid phase with an oligonucleotide (primer) and bridge amplification (Illumina)

Amplification

1- immobilisation on solid phase with an oligonucleotide (primer) and bridge amplification (Illumina)

Amplification

1- immobilisation on solid phase with an oligonucleotide (primer) and bridge amplification (Illumina)

The enzyme incorporates nucleotides to build double-stranded bridges on the solid-phase substrate.

Denaturation leaves single-stranded templates anchored to the substrate.

Amplification

1- immobilisation on solid phase with an oligonucleotide (primer) and bridge amplification (Illumina)

Sequencing

Several types of sequencing dependent on the sequencer.

1- Pyrosequencing Roche 454

2- sequencing by ionic detection Ion PGM_Ion Proton_IonS5 by Ion Torrent / Thermo Fisher

3- sequencing by ligation **SOLID**

4- sequencing by four-color reversible termination **Illumina**

Sequencing

1- Pyrosequencing _ Roche 454

As a base is incorporated, the release of an inorganic pyrophosphate triggers an enzyme cascade, resulting in light

454	454 GS FLX	1 million	700	0.7
ABI Sanger	ABI Sanger 3730xl	96	800	0.0000768
Platform	Label	Reads per run	Read length (mode or average)	Bases per run (gigabases)

Single nucleotide addition

Only one dNTP species is present during each cycle; multiple identical dNTPs can be incorporated during a cycle, increasing emitted light

Sequencing

1- Pyrosequencing _ Roche 454

Analysis of one million base pairs of Neanderthal DNA

Nature 444, 330-336 (16 November 2006) | doi:10.1038/nature05336

A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing

Cell. 2008 August 8; 134(3): 416-426 | doi:10.1016/j.cell.2008.06.021

Sequencing

1- Pyrosequencing _ Roche 454

Analysis of one million base pairs of Neanderthal DNA

Nature 444, 330-336 (16 November 2006) | doi:10.1038/nature05336

A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing

Cell. 2008 August 8; 134(3): 416-426 | doi:10.1016/j.cell.2008.06.021

Sequencing

2- Sequencing by ionic detection _lon Torrent

Platform	Reads per run	Read length (mode or average)	Bases per run (gigabases)
ABI Sanger	96	800	0.0000768
454	1 millions	700	0.7
Ion Torrent	75 millions	200	15

H

49-65,000\$

Sequencing

3- Sequencing by ligation

2nd Base

С

А

G

Platform	Reads per run	Read length (mode or average)	Bases per run (gigabases)
ABI Sanger	96	800	0.0000768
454	1 millions	700	0.7
IonTorrent	75 millions	200	15
SOLiD	3 billions	75	320

1st Base

С

G

251,000 \$

Sequencing

illumina®

3- Sequencing by four-color reversible termination_Illumina

Sequencing

illumina®

3- Sequencing by four-color reversible termination_Illumina

Sequencing

9

illumina®

3- Sequencing by four-color reversible termination_Illumina

Image of first chemistry cycle

After laser excitation, capture the image of emitted fluorescence from each cluster on the flow cell. Record the identity of the first base for each cluster.

Before initiating the next chemistry cycle

The blocked 3' terminus and the fluorophore from each incorporated base are removed.

Sequencing

illumina®

3- Sequencing by four-color reversible termination_Illumina

+Advantages

- High throughput technology
- Very good quality of the sequences, error rate< 0.1 %

-Limitations

- Process of reverse transcription
- Secondary structure of RNA
- PCR-biais
- Sequences with high AT do not amplify as well as GCnormal one
- Short reads

Since 2012, a new cohort of techniques has been developed:

- using single molecule sequencing
- single real time sequencing
- removing the need for clonal amplification.

This :

- reduces errors caused by PCR
- simplifies library preparation
- and, most importantly, gives a much higher read length

Robotics

Sequencing

Single molecule Long Read Sequencing

RSII 700,000 \$

Platform	Year	Reads per run	Read length (mode or average)	Bases per run (gigabases)
ABI Sanger	2002	96	800	0.0000768
454	2011	1 millions	700	0.7
SOLiD	2013	3 milliards	75	320
IonTorrent	2015	75000000	200	15
Illumina	2016	600 millions to 6 milliards	100 to 300	7.5 to 2 000
PacBio	2014	660000	13500	20

Sequel 350,000 \$

Single molecule Long Read Sequencing

Application: Whole genome

Jarvis et al. (2017) Nature

Driscoll et al. (2017) Standards in Genomic Sciences

Bickhart et al. (2017) Nature genetics

Brozynska et al. (2016) Plant Biotechnology Journal

Seo et al. (2016) Nature

INRA TOULOUSE/SUNRISE PROJECT

Single molecule Long Read Sequencing

Application: Targeted sequencing

to fully characterize genetic complexity — including structural variation, rare SNPs, indels, copy number variation, microsatellites, haplotypes, and phasing

Evolution of PLA2 related toxins

Dowell et al. (2016) Current Biology

Single molecule Long Read Sequencing

Application: Epigenetics

<u>Single Molecule, Real-Time (SMRT) Sequencing</u> directly detects epigenetic modifications by measuring kinetic variation during base incorporation. By capturing these modifications simultaneously with sequence data, this method eliminates the need for special sample preparation and additional sequencing.

Single molecule Long Read Sequencing

Application: Epigenetics

Single Molecule, Real-Time (SMRT) Sequencing directly detects epigenetic modifications by measuring kinetic variation during base incorporation. By capturing these modifications simultaneously with sequence data, this method eliminates the need for special sample preparation and additional sequencing.

Single molecule Long Read Sequencing

Application: RNA Sequencing

- The isoform sequencing (Iso-Seq) application generates full-length cDNA sequences from the 5' end of transcripts to the poly-A tail —transcriptome reconstruction
- The Iso-Seq method generates information without about alternatively spliced exons and transcriptional start sites. It also delivers information about poly-adenylation sites for transcripts up to 10 kb.

Workman et al. (2017) bioRxiv

Wang et al. (2016) Nature Communications

Single molecule Long Read Sequencing

Oxford Nanopore	4400000	9545	42
PacBio	660000	13500	12.000
Illumina	600 millions to 6 milliards	100 to 300	7.5 to 2 000
IonTorrent	75000000	200	15
SOLiD	3 milliards	75	320
454	1 millions	700	0.7
ABI Sanger	96	800	0.0000768
Platform	Reads per run	(mode or average)	Bases per run (gigabases)

Read length

MinION 1,000 \$

MinION MkI: portable, real time biological analyses

Fig. 1 Identification of bacterial, archaeal, fungal and viral species using rapid gDNA library preparation and the real-time WIMP analysis workflow

	RE	PRODUCTS HO	WIT WORKS APPLI	CATIONS GET STAF	RTED PUBLICATIONS	
Nanopore	e sequencing	g offers adv	antages in a	all areas of r	esearch	
Pathogens / Microbiology / Antimicrobial resistance	Environmental research	Microbiome	Basic genome research	Human genetics	Cancer research	
			MUM			
	Clinical research	Plant research	Transcriptome analysis	Population genomics		

Single molecule Long Read Sequencing

Application: Microbiome

Single molecule Long Read Sequencing

Application: Microbiome

Bork et al., (2015) Science

Single molecule Long Read Sequencing

Application: RNA Sequencing

Nanopore technology is the only available sequencing technology which can sequence RNA directly

Garalde et al., (2016) bioRxiv

Single molecule Long Read Sequencing

Next....

GridION

PromethION

SmidgION

MinION X5

MinION X48

Always more....

RNA Sequencing provides insight into :

- gene expression analysis
- discovery of novel transcripts
- identification of alternatively spliced genes
- detection of allele specific expression
- de novo RNA sequencing (whithout reference transcriptome)
- single cell RNA sequencing

In addition to polyadenylated messager RNA (mRNA) Transcripts, analysis of différent poppulation of RNAs :

- Total RNA
- Pre-mRNA
- Non coding RNA : micro RNA, long ncRNA
- tRNA sequencing

Single Cell RNA-Seq

 C_1 TM Single-Cell Auto Prep System 96 cells in 5 min

Single Cell RNA-Seq

tRNA Sequencing

BRIEF COMMUNICATIONS

Efficient and quantitative high-throughput tRNA sequencing

Guanqun Zheng^{1,7}, Yidan Qin^{2,7}, Wesley C Clark¹, Qing Dai³, Chengqi Yi^{1,6}, Chuan He^{1,3–5}, Alan M Lambowitz^{2,8} & Tao Pan^{1,4,8}

Despite its biological importance, tRNA has not been adequately sequenced by standard methods because of its abundant post-transcriptional modifications and stable structure, which and are particularly problematic for reverse transcriptases (RTs), causing cDNA synthesis to stop or incorporate a wrong nucleotide. In mammals, N^1 -methyladenosine (m¹A) is present in all tRNAs at position 58, N^3 -methylcytosine (m³C) is present in five tRNAs at position 32 and the variable loop, and N^1 -methylguanosine (m¹G) is present in about half of all tRNAs at position 37 or 9. We applied two recombinant enzymes as a mixture to remove these three methylations in human tRNAs. The first was the wild-type enzyme AlkB from *Escherichia coli*, which is known to efficiently demethylate m¹A and m³C in single-stranded nucleic acids as its DNA and RNA repair function^{5,6}. Wild-type AlkB, however, works very poorly on m¹G modification⁷. On the basis of its known three-dimensional structure complexed with nucleic acids, we engineered AlkB to generate a specific mutant, D135S, that

Zheng et al., (2015) Nature Methods

Dual RNA-Sequencing

PLOS PATHOGENS

Westermann et al., (2017) Plos Pathogens

Alexander J. Westermann¹°, Lars Barquist¹°, Jörg Vogel^{1,2}*

In situ RNA-Sequencing

BRIEF COMMUNICATIONS

Ke et al., (2013) Nature methods

FISSEQ, Fluorescent In Situ RNA SEQuencing

In situ sequencing for RNA analysis in preserved tissue and cells

Rongqin Ke^{1,2,5}, Marco Mignardi^{1,2,5}, Alexandra Pacureanu³, Jessica Svedlund¹, Johan Botling², Carolina Wählby^{3,4} & Mats Nilsson^{1,2}

Tissue gene expression profiling is performed on homogenates

are limited in spatial resolution. Also, because of sam the collected cells might not reflect the nature of th compartment targeted for expression profiling. Thus, s single molecules directly in the tissue environment is a for single-cell analysis technology.

Here we show that sequencing chemistry can be app for analysis of up to four-base-pair fragments in sin molecules in the unperturbed context of fixed cells a Our method is based on padlock probing, rolling-circ cation (RCA) and sequencing-by-ligation chemistry⁹ RCA in combination with padlock-probe circularizations has been used to produce clonally amplified ro

Conclusions

NGS technologies are now routine part of biological research.

To date more than 14,000 genomes have been deposited within NCBI

In 2013 Schatz and Langmead reported that the world can generated ~15 petabytes per year!!

The new challenge... to provide infrastructure for analyses and storage.

The NGS arm race is not finished...

-GenapSys (Sigma-Aldrich)

-Genia (Roche)

-...

-new nanopore technology with Firefly (Illumina)

A national infrastructure that brings together the capacities and expertise of genomic and bioinformatic plateforms

https://www.france-genomique.org

The France Génomique plateforms

Technologies, Equipments and Expertise sharing

Call for proposals: « Large-scale sequencing projects »

Environmental and agronomical genomics

http://oceans.taraexpeditions.org/

Call for proposals: « Large-scale sequencing projects » Health and Human Genetics

Muscular dystrophy

Call for proposals: « Large-scale sequencing projects »

~	Å.							ОК
FRANCE GÉN	IOMIQUE				Mutualisat Pour l'ana	ION DES COMPÉTE ALYSE GÉNOMIQI	NCES ET DES ÉQI JE ET LA BIO-INF	UIPEMENTS FRANÇAIS F ORMATIQUE
ACCUEIL	À PROPOS DE FRANCE GÉNOMIQUE	L'OFFRE DE FRANCE GÉNOMIQUE	DOMAINES D'EXPERTISES	MODALITÉS DE COLLABORATION	GRANDS PROJETS	FORMATION ET E-LEARNING	PUBLICATIONS	CONTACTS
	s > Résultats AAP 20)16						
RÉSULTATS AAP 20	16							RE UN T
TITRE DU PROJET	DOMAINE	PORTEURS	AFFILIA	AFFILIATION DES PORTEURS			ā.	OUVERT EN CONTINU
MetaOMIC-RMQS	Biodiversité	Lionel Ranjard UMR Agroécologie-AgroSup/			INRA/uB Dijon		PLATE-FOR	RMES
BUCEPHALE	Biodiversité	Ludovic Orlar	ndo CNRS U	MR AMIS 5288 Toul	ouse		EN GÉNOI & BIOINFO	MIQUE ORMATIQUE
ANOTSEBIOME	Biodiversité	Anne Geiger	IRD-CIR/ InterTryp Montpelli	AD-UMR 177 er			DÉVELOPF & VEILLE TECHNOL	
MICROSTORE	Biodiversité	Cécile Lepère	e UMR CN Clermont	RS 6023-LMGE -Ferrand			FRANCE G	ÉNOMIQUE
MICACE	Biodiversité	Philippe Berti	in Laborato Strasbou	ire de Microbiologie rg	GMGM		RECRO	POSTES À POURVOIR
BEECHGENOMES	Biodiversité	Ivan Scotti	INRA méditerra Avignon	UR 629 "Ec anéennes"	ologie des	Forêts	ENGLISH S	ITE

Continuous project submission

To contact us

FRANCE GÉNO			A NATIONAL RI EXPERTISE AN	ESEARCH INFRASTRU ID EQUIPMENT FOR G	CTURE THAT BRINGS TO	OK DGETHER FRENCH ND BIOINFORMATICS
HOME	ABOUT FRANCE GÉNOMIQUE	FRANCE GÉNOMIQUE OFFER	AREAS OF EXPERTISE	GOVERNANCE STRUCTURE	COLLABORATE WITH FRANCE GÉNOMIQUE	CONTACTUS
tome > Contact us > Send	l us a message					
END US A MESSAGE	quired)	_				NOLOGY ELOPMENT NOLOGY WATCH
ubject (Required)					OPER.	
ext of your message: (F	Required)				GENC	DMICS AND IFORMATICS
						S AT CE GÉNOMIQUE JOB VACANCIES
				ाः Send a message		IBMIT ROJECT CONTINUOUS APPLICATION SCHEME
					FREN	CH SITE
EGAL NOTICES FRANCE G					FRANCE GÉNOMIQI	

@: mathilde.clement@inra.fr

Thank you for your attention!