

Le 29 juin 2017, Module 2

- Main approaches in Bioinformatic to explore RNA-Seq data
- From raw data to gene expression

Claire Toffano-Nioche (I2BC) Véronique Brunaud (IPS2)

High-Throughput Sequencing changes Bioinformatic approaches

Impacts in Computer sciences

- Run huge data : from 50 Gigas to Tera
- High-performing of computer and network

- Disk usage and backup

Impacts in Bioinformatics Tools

- Create new algorithms (more performing, sensibility/specificity)

- Use and evaluate many tools

(known parameters, set of reference)

Impacts in Statistical methods

-Impact of technical methods(library preparation, sequencing)-Change of data : type, quantity

RNA-Seq Applications

- Applications on mRNA or non coding RNA
- Measure gene expression of annotated or *de novo* genome
- Differential expression (conditions, organs, genotypes...)
- Detect variants : allele specific expression, SNPs in genes

Goal 1- assigned each read to a gene 2- obtain counts by gene

SPS Module2

Main approaches in Bioinformatic of RNA-Seq

1/ Classical analyses of RNA-Seq (V. Brunaud)

- Check quality , Trimming
- Mapping / counts
- Assembly

2/ Specific applications of RNA-Seq (C. Toffano-Nioche)

- Study smallRNA
- Gene expression by transcript (isoform)

Bioinformatics from raw data to counts

Bioinformatics from raw data to count

Classic pre-processing

Classic pre-processing

Fastq format

View the quality of reads with fastQC

FastQC → a report of quality on each sample
Command line or interface viewer
Generate a html report to check quality

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

fastQC – Quality score

Quality score (Q-scores):

Q(B) =-10 log10(P(~B)) where P(~B) is the estimated probability of an assertion of Base being wrong. Qscore=20 =1% error

Generally trimming by 3'end as long as Qscore < 20

fastQC – Quality score

 \rightarrow Quality score very good Qscore > 30 (< 1%₀)

fastQC – **length of reads**

fastQC - GC %

Duplicate reads = exactly same sequence for 2 reads Is it a bias of PCR-duplication or a natural duplicate ?

- Distinguish PCR- from natural duplicates : Natural duplicates are read duplicates that originated from different mRNA molecules.
- \rightarrow Library using UMI=Unique Molecular Identifier method.
- The impact of amplification on differential expression analyses by RNAseq. S. Parekh et al. (2016) in Scientific reports vol6
 - "We find that a large fraction of computationally identified read duplicates are not PCR duplicates and can be explained by sampling and fragmentation bias."
 - "Removal of duplicates does not improve the accuracy of quantification"
 - "Based on simulated differential expression..., we find that computational removal of duplicates has either a negligible or a negative impact on FDR and power"

It's not necessary to remove duplicate reads

Conclusion of pre-processing, check quality

Current trimming

- mRNA : after quality trimming length > 30 bases
- smallRNA : no trimming quality, select by size length (see next talk)
- no undetermined base in read (for assembly)
- remove the both reads of one Paired-ends read (same fragment)
- remove ribosome

Trimmomatic

remove adapter, Trimming low quality, length control

SortMeRNA remove rRNA sequences

Depends on the biological object: mRNA, IncRNA, smallRNA...

Mapping

Sample characteristics before mapping what kind of data ?

Depend on type of library

•Paired-end reads or single reads

•Stranded or not

•Sizing, Size of reads 75,100,150...

•Library depth

Definitions of fragment and insert size

See the above figure (from https://www.biostars.org/p/106291/)

Paired-end reads (PE) versus single reads (SR/SE)

Chhangawala et al. Genome Biology (2015) 16:131

 \rightarrow For DE analyses, same list of genes for 50bp in PE and 75bp in SE

 \rightarrow For detect splicing junction, PE is better

Z. Chang et al. (2014) - PLOS one

→For Assembly (*de novo* genome) read length of 100 or more is better (organism dependent)

Sequencing Stranded or not ?

Sample characteristics before mapping what sort of data ?

Depend on type of library

- •Paired-ends reads or Single reads
- •Stranded or not
- •Size of reads 75, 100,150
- •Depth of library

Depend on knowledge about the organism

Is there a genome sequence ? Is there a transcriptome reference ? Is there a quality of these references ?

1st strategy : mapping RNA-Seq against a genome (transcripts or genome)

- + classical trimming, time saving
- confidence of gene annotation, no new genes detected

Mapper: different types of tools

Versus transcriptome: bowtie2 (one isoform / gene)

Versus genome with alignment: Tophat2(bowtie2)/HiSat2, STAR

- \rightarrow Search for the best 'exact' alignment
- → Generate sam/bam files = describe alignments

Alignment: essential parameter

BOWTIE2 : search for the best seed alignment

Read: TAGCTACGCTCTACGCTATCATGCATAAAC

Seed 1 fw:	TAGCTACGCT
Seed 2 fw:	CGCTCTACGC
Seed 3 fw:	ACGCTATCAT
 Seed n fw:	ATGCATAAAC

Some parameters are essential like end-to-end (default) end-to-end (no trimming) local (soft clipped)

Alignment:	
Read:	GACTGGGCGATCTCGACTTCG
Reference:	GACTGCGATCTCGACATCG

Alignment:	
Read:	ACGGTTGCGTTAA-TCCGCCACG
Reference:	TAACTTGCGTTAAATCCGCCTGG

Mapping

- No splicing
- A reference transcript
- No alternative transcript

- Information on genome (min/max of intron length
- All transcripts (gene models) for 1 gene

Mappers: different type of tools

Versus transcriptome: bowtie2 (one isoform /gene)

Versus genome with alignment: Tophat2(bowtie2)/HiSat2, STAR

- \rightarrow Search for the best 'exact' alignment
- \rightarrow Generate sam/bam files = describe alignments

Versus genome last new tools (Free-alignment) 2015-2017: Kallisto,Salmon,Sailfish

no real alignment : the information is not *where* a read aligns in a transcript , but only *which* transcripts could have generated the read.

 \rightarrow Estimation of k-mer assignment by Expectation-Maximization

- →Generate expected counts /transcripts –gene (TPM)
- \rightarrow No sam/bam files, from fastq to TPM

Mappers: different type of tools

The Genomics Core Facility @ NYU CGSB

Web site, June 2016

New tools are Faster \rightarrow no finish photo:) & equivalent accuracy

C. Everaert et al.(2017) Benchmarking of RNA-sequencing analysis workflows using wholetranscriptome RT-qPCR expression data. *Scientific Reports* **7**, 1559

> Equivalent results of workflows

Quantification of non-concordant genes reveals that the numbers are low and similar between workflows. (A) A schematic overview of different classes of genes, used for further analysis, by means of a

Mapper parameters (example)

each tool = many parameters with default (75 for tophat2)

G. Baruzzo et al. dec 2016 - Nature methods

Bowtie2

-x Arabidopsis_transcripts_index-1 read1.fastq -2 read2.fastq --local

Default is –end-to-end and not --local Tophat2 --min-intron-length 10 --max-intron-length 70000 -G Arabidopsis_TAIR10.gff Arabidopsis_genome_index read1.fastq read2.fastq

Default min-intron=70 and max-intron=500 000

Alignments

Mapping : SAM/BAM file

https://samtools.github.io/hts-specs/SAMv1.pdf

View read alignment via IGV (Integrative Genome Viewer)

J.T. Robinson Integrative Genomics Viewer. Nature Biotechnology 29, 24–26 (2011)

View read density and gene annotations via IGV

Counts

Counts

Type of counts : raw count (nb assigned reads), estimated counts, normalized counts RPKM/FPKM/TPM (size of library & gene/transcript)

How to count ?

Counts depend on the type of library •Stranded or not

•Single reads or Pairedend reads

Counts by isoform or by gene

From htseq-count website

Conclusion on Mapping / counts

- Understand the main characteristics of tools (splicing or not)
 → Know the essential parameters and the default values
- Adjust parameters to your genome or question
 - \rightarrow Study coding or no coding RNA
 - \rightarrow Size of introns of organism
 - \rightarrow Repeated regions : multi-hits
 - default 1 best hit randomly chosen
- Counts by gene / transcripts \rightarrow see next talk

2nd strategy : de novo Assembly of RNA-Seq (without genome)

- + defined new gene models
- Assembly: not perfect (contig quality), time and memory consuming

2 methods for de novo assembly of RNA-Seq

1- OLC : overlap layout consensus : newbler for 454 Research all overlap both reads to form a consensus=contig

- → Too expensive computer resources for million of reads treated
- \rightarrow Adapted for seq. length > 300bases

2- Bruijn Graph : velvet, trinity Cut reads in kmer and overlap k-mer to form graph Each graph path form a contig

→ If sequencing errors : many contigs
 → Need memory (150G – 500G)

2nd strategy : de novo Assembly of RNAseq (without genome)

Assembly Results

F1_Mplex			
Nb of PE reads	43 030 388 PE		
Nb of contigs	33 736 (length mean 1360)		
Nb of mapped contigs Genome TAIR10	33 072 98%		

Data from Illumina HiSeq2000 •Velvet/oases (kmer 61,71) •iAssembler

88% of genes confirmed by at least one contig

1 gene – 1 contig same gene model

1 gene – 2 or more contigs same gene model

Quality of Assembly : contig versus gene annotation

35% of contigs with other gene models (isoforms)

1 gene – 1 or n contigs with other gene models

\rightarrow 3% of contigs with no annotated genes

Check contig quality

- Number of contigs near number of expected genes
- Median length of contigs (N50)
- % of reads that maps contigs, redundancy of the contigs "multi-hits"
- % contigs that encode proteins 'known in bank'

→ Trinotate (Trinity suite)

Assembly

Chimeric contigs \rightarrow remove in part with library stranded

Conclusion for assembly

 \rightarrow A good quality of contigs, efficient to detect new gene models

→ Problems: distinct false/good gene models, chimera that increase with read number

 \rightarrow Improving Assembly tools with PE, oriented, tuning parameters (coverage)

Be careful, assembly can be difficult if genome

contains many repeats, heterozygous regions, polyploidy ...

 \rightarrow A great number of contigs (ex > 500.000 without change parmeters)

Conclusion on Bioinformatic usage

THANKS

