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Transcriptome

I Transcriptome = complete set of transcripts in a cell and their quantity,
for a specific developmental stage or physiological condition (Zhang et al.
2009).

I varies across environmental conditions.
I reflects actively expressed genes at a given time.

I mRNA expression level in a given population.

Key aims of transcriptomics
I to catalogue all species of transcript; to determine the transcriptional

structure of genes

I differential analysis: to quantify the changing expression levels of
each transcript during development and under different condition.



A typical RNA-Seq experiment

Biological question

Low-level analysis

Experimental design

Sequencing experiment

Higher-level analysis

Biological validation and 
interprétation

Exploratory Data Analysis, 
image analysis, base calling, 
read mapping, metadata 
integration

Exploratory Data Analysis, 
normalization and expression 
quantification, differential 
analysis, metadata integration

*Adapted from S. Dudoit, Berkeley



RNA-sequencing

# of reads mapped to

Gene 1 Gene 2 … Gene m
    25       320    …    23

Random 
fragmentation

Reverse 
transcription

mRNAs from a sample

Adapted from Li et al. (2011)

Fragmented mRNAs cDNAs

A vector of counts

counting

mapping

PCR 
amplification & 
sequencing

mapped reads A list of reads

from Gene 19

from Gene 23
…

from Gene 56

ATTGCC...

GCTAAC...
…

AGCCTC...

__ _ __

_ __
…
__ __ _

__ _ __

_ __
…
__ __ _

_____

___
…
_____



A typical raw dataset

S1 S2 . . . Sj . . . Sn

Gene 1 16 9 . . . y1j . . . 15
Gene 2 4448 3973 . . . y2j . . . 3964

. . . . . . . . . . . . . . . . . . . . .
Gene i yi1 yi2 . . . yij . . . yin

. . . . . . . . . . . . . . . . . . . . .
Gene G 59 164 . . . yG . . . 143

Seq. depth 6865057 11127087 . . . Nj =
∑G

i=1 yij . . . 11320226

yij = number of sequences from sample j assigned to gene i .

Remark: one row = one region of interest (gene, exon, transcript, · · · ).



Differential analysis
Identification of differentially expressed (DE) genes

A gene is declared differentially expressed (DE) between two conditions if
the observed difference is statistically significant, i.e. greater than a natural
random variation.

I Need of statistical tools to make a decision.

I Main steps of the analysis: experimental design, normalization, differential
analysis, multiple testing.



Statistical issues of gene expression analysis from RNA-Seq
experiment

I A large number of genes and few replicates

I Discrete, positive and skewed data

I Large dynamic range with presence of 0 counts

I The total number of sequences (= library size) is not the same for all the
samples



Normalization or how to make measurements comparable

Definition
Normalization is a process designed to identify and correct technical biases
removing the least possible biological signal. This step is technology and
platform-dependant.

Technical biases
Some biases may be controlled by an adapted experimental design or a good
experimental protocol.
Normalization aims to correct systematic uncontrollable biases such as those
induced by sequencing process.

Within and between normalization
Within-sample normalization enabling comparisons of fragments (genes) from
a same sample.
Between-sample normalization enabling comparisons of fragments (genes)
from different samples.



Sources of variability

Read counts are proportional to expression level, gene length and sequencing
depth (same RNAs in equal proportion).

Within-sample

I Gene length

I Sequence composition (GC content)

Between-sample

I Depth (total number of sequenced and mapped reads)

I RNA-composition or presence of majority fragments

I Sequence composition du to PCR-amplification step in library preparation
(Pickrell et al. 2010, Risso et al. 2011)



Normalization and differential expression (DE) analysis
DE analysis concerned with relative changes in expression levels between
conditions rather than estimating absolute expression levels.

Technical effects to correct are those related to the experimental conditions
(sample-specific effects).

Sequencing depth

0e+00

2e+06

4e+06

6e+06

codY.1 codY.2 codY.3 WT.1 WT.2 WT.3
sample

lib
si

ze

RNA composition

from Evans et al. (2017)
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Typology of normalization methods

Typology according to the underlying assumptions (Evans et al. 2017).

Normalization by library size
Same total expression, same amount of mRNA/cell for each experimental
condition.

Normalization by distribution or testing

I DE and non-DE genes have the same behaviour.

I Balanced expression.

Normalization by controls

I Existence of control (invariant set of genes).

I Control genes behave like non-control genes (same technical effects).



Normalization by library size

How does it work ?
Normalized counts are raw counts divided by a scaling factor calculated for
each sample.

Total Count (TC) (Marioni et al. 2008)
The scaling factor depends on the total number of reads in each sample.

yij

ŝj
, ŝj =

Nj
1
n

∑
` N`

yij number of reads for gene i in sample j , Nj number of reads in sample j (library size of sample j),

n number of samples in the experiment, ŝj normalization factor associated with sample j

Reads Per KiloBase Per Million Mapped (Mortazavi et al. 2008)

yij

ŝij
, ŝij = Nj ∗ Li ∗ 103 ∗ 106

Li : length of gene i



Normalization by library size: some remarks

Reads Per KiloBase Per Million Mapped (RPKM) and its variants
(FPKM, ERPKM)

I Allows to compare expression levels between genes of the same sample

I Unbiased estimation of number of reads but affect the variance. (Oshlack
et al. 2009)

Total Count normalization may be driven by a small number of highly
expressed genes.



Normalization by distribution: variants of TC normalization

Upper Quartile normalization (Bullard et al. 2010)

ŝj =
Q3j

1
n

∑
` Q3`

Median normalization

ŝj =
medianj

1
n

∑
` median`

Q3j and medianj are calculated after exclusion of genes with no read counts.

Quantile: FQ (Robinson and Smyth 2008)
Force all samples to have the same distribution.



Upper quartile and median normalization

Upper quartile normalization
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Third quartile is equal across samples.

Median normalization
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Quantile normalization

Before normalization
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After quantile normalization
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The Effective Library Size concept

Motivation
Different biological conditions express different RNA repertoires, leading to
different total amounts of RNA

Assumption
A majority of transcripts is not differentially expressed

Aim
Minimizing effect of (very) majority sequences

I Trimmed Mean of M-values, Robinson and Oshlack 2010 (edgeR)

I Relative Log-Expression, Anders and Huber 2010 (DESeq2)



Trimmed Mean of M-values (TMM)

Idea: we may not estimate the total ARN production in one condition but we
may estimate a global expression change between two conditions from non
extreme Mi distribution.
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Filter on:

I transcripts with nul counts,

I the 30% more extreme
M r

ij = log2(
yij/Nj

yir/Nr
) values,

I the 5% more extreme
Ar

ij = 0.5× [log2(
yij

Nj
) + log2(

yir

Nr
)]

values.



Trimmed Mean of M-values

1. Select the reference sample r

2. Define a set of genes G∗ for which neither the M r
ij or the Ar

ij value was
trimmed

3. Calculate the scaling factors TMM(r)
j such as

log2(TMM(r)
j ) =

∑
i∈G∗ w r

ij M
r
ij∑

i∈G∗ w r
ij

with w r
ij =

Nj−yij

Nj yij
− Nr−yir

Nr yir

4. Rescale the factors to avoid dependance on a specific reference sample

ŝj =
TMM(r)

j

exp(
∑

` TMM(r)
` /n)



The Relative Log-Expression method (RLE, DESeq)

1. Compute a pseudo-reference sample: geometric mean across samples
(less sensitive to extreme value than standard mean)

y r
ij =

(
πn

j=1y1/n
ij

)
with yij number of reads in sample j assigned to gene i, n number of samples in
the experiment.

2. Calculate scaling factors

ŝj = median
i:y r

ij 6=0

yij

y r
ij



Some remarks about TMM and RLE normalization

Interpretation of the scaling factors

I The normalization factors of all the libraries multiply to 1.

I ŝj < 1: a small number of high count genes are monopolizing the
sequencing. ⇒ Need of downscaling.

WT.1 WT.2 WT.3 codY.1 codY.2 codY.3
RLE 1.05 1.05 0.87 1.06 1.06 0.93

TMM 1.02 1.00 0.97 1.01 1.05 0.95

Model-based normalization, not transformation
In edgeR and DESeq2, normalization factors = correction factors that enter
into the model.



Normalization by testing

Iterations between two steps

1. Estimation of a set of non DE-genes.

2. Estimation of a scaling factor for each sample using this defined set.

Methods
I PoissonSeq (Li et al. 2012)

I DEGES (Kadota et al. 2012)



Where conventional methods fail

from Evans et al. (2017)



Normalization by controls

Assumptions

I Existence of controls and behavior as expected (negative controls =
non-DE)

I Controls behave like non-control genes (affected by same technical
effects)

Methods

I Housekeeping genes

I "Conventional normalization" with Spike-ins

I Factor analysis of controls: Remove Unwanted Variation (RUV) (Risso et
al., 2014)



RUVSeq: Remove Unwanted sources of Variation
Risso et al., 2014

Motivation
Most methods fail to correct for complex unwanted technical effects.

Aim
To remove variation between samples that is not the result of the biological
covariates of interest.

Three variants
I RUVg: existence of negative controls (non-DE across conditions)

I RUVs: existence of negative controls and negative controls samples
(expression not related to biological conditions)

I RUVr: does not require existence of controls. Factors of wanted variation
are known (design matrix) and the factors of unwanted variation are not
correlated with experimental conditions.



RUVSeq principle

Estimate unwanted technical effects using a Generalized Linear Model

logE[Y |W ,X ,O] = Wα+ Xβ + O.

I Y : observed read count matrix.

I X : known design matrix for the experiment.

I W : matrix related to k factors of unwanted variance (k must be fixed
beforehand).

I O: optional matrix of sequencing depth offsets.

Estimation of W
I RUVg: use a set of J negative control genes (βj = 0; j ∈ [1; J]).

I RUVs: use a set of negative control samples (technical replicates)
(β = 0).

I RUVr: use the residuals from the first-pass GLM regression of Y on X
without W .



Outline

Introduction

Overview of different normalization methods

Comparison of different normalization methods



Comparison of normalization methods

At lot of different normalization methods...
I Some are part of models for DE, others are ’stand-alone’.

I They do not rely on similar hypotheses.

I But all of them claim to remove technical bias associated with RNA-seq
data.

Which one is the best ?
I How to and on which criteria choice a normalisation adapted to our

experiment ?

I What impact of the bioinformatics, normalisation step or differential
analysis method on lists of DE genes ?



4 real datasets
At least 2 conditions, at least 2 bio. rep., no tech. rep.

Simulated dataset (from the mouse dataset)

I Proportion of DE genes: from 0 to 30%

I equivalent / not equivalent library sizes

I presence / absence of high count genes



Comparison procedures

Distribution and properties of normalized datasets
Boxplots, variability between biological replicates

Comparison of DE genes

I Differential analysis: DESeq v1.6.1 (Anders and Huber 2010), default param.

I Number of common DE genes, similarity between list of genes (dendrogram -
binary distance and Ward linkage)

Power and control of the Type-I error rate
Simulation study



Normalized data distribution

When large diff. in lib. size, TC and RPKM do not improve over the raw counts.

Example: Mus musculus dataset



Within-condition variability

Example: Mus musculus, condition D dataset



Number of DE genes

I DESeq v1.6.0, default parameters

I Input data: raw counts + scaling factors ŝj (except RPKM)

I RPKM: normalized data non rounded and normalization parameter ŝj = 1

Example: E. histolytica dataset, common genes



Lists of differentially expressed (DE) genes

For each dataset
I (gene x method) binary

matrice:
I 1: DE gene
I 0: non DE gene

I Jaccard distance between
methods

I dendrogramm, Ward linkage
algorithm

Consensus matrice
Mean of the distance matrices
obtained from each dataset



Type-I Error Rate and Power (Simulated data)
Inflated FP rate for all the methods except TMM and DESeq (RLE)



So the Winner is ... ?

In most cases
The methods yield similar results

However ...
Differences appear based on data characteristics



Interpretation

I RawCount Often fewer differential expressed genes (A. fumigatus: no DE gene)

I TC, RPKM
I Sensitive to the presence of majority genes
I Less effective stabilization of distributions
I Ineffective (similar to RawCount)

I FQ
I Can increase between group variance
I Is based on an very (too) strong assumption (similar distributions)

I Median High variability of housekeeping genes

I TC, RPKM, FQ, Med, UQ Adjustment of distributions, implies a similarity between
RNA repertoires expressed



Conclusions of the study of StatOmique (2013)

I Hypothesis: the majority of genes is invariant between two samples.

I Differences between methods when presence of majority sequences, very
different library depths.

I TMM and RLE: performant and robust methods in a DE analysis context
on the gene scale.

I Normalisation is necessary and not trivial.

I Do not normalise by gene length in a context of differential analysis.



Comparaison study of Evans et al. (2017)

Simulation parameters

I 2 datasets: 10000 genes in 4 samples, or 1000 genes in 10 samples

I same or different amount of mRNA / cell

Criteria for comparison

I Mean Square Error (MSE) of the log fold change for non DE genes
(should be close to 0) samples

I Empirical False Discovery Rate (eFDR)

Normalization methods
DESeq (RLE), TMM, TC, DEGES, PoissonSeq



Conclusions of the study of Evans et al. 2017

I The correct normalization method to use depends on which assumptions
are valid for the biological experiment:

I same / different amount of mRNA / cell
I symmetry of differential expression
I low number of DE genes

I Incorrect normalization leads to problem in downstream analysis, such as
inflated FP.

I There are examples of global shifts in expression that violate assumptions
of conventional normalization methods, requiring controls.



Normalization: key points

Detection of differential expression in RNA-seq data is inherently
biased (more power to detect DE of longer genes).

Do not normalize by gene length in a context of differential analysis.

RNA-seq data are affected by technical biaises (total number of mapped reads
per lane, gene length, composition bias)
⇒ A normalization is needed and has a great impact on the DE genes.

The correct normalization method to use depends on which assumptions are
valid for the biological experiment.

No normalization method is perfect, and for every method there exists cases
for which the assumptions are violated.
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